Synthesis and Characterization of Carbonyl Group-6-Metal Derivatives with Ligand N,N-Bis(diphenylphosphino)naphthalen-1-amine (= N-(Diphenylphosphino)-N-naphthalen-1-yl-P,P-diphenylphosphinous Amide). Molecular Structure of *cis*-Tetracarbonyl[N-(diphenylphosphino-κP)-Nnaphthalen-1-yl-P,P-diphenylphosphinous amide-κP]molybdenum (*cis*-[Mo(CO)₄{C₁₀H₇-1-N(PPh₂)₂}])

by Harbi Tomah Al-Masri*a), Beshir M. Mohamed^a), Ziad Moussa^b), and Mohamed H. Alkordi^c)

^a) Faculty of Applied Sciences, Department of Applied Chemistry, Taibah University, Madinah 1343, K.S.A. (e-mail: harbialmasri@yahoo.com)

^b) Faculty of Science, Department of Chemistry, Taibah University, Madinah 344, K.S.A.

^c) King Abdullah University of Science and Technology, Jeddah, Thuwal 23955-6900, K.S.A.

The reaction of *N*,*N*-bis(diphenylphosphino)naphthalen-1-amine (1) with $[M(CO)_6]$ (M = Cr, Mo, W; 1:1 molar ratio) afforded *cis*- $[M(CO)_4(1)]$ 2 (M = Cr), 3 (M = Mo), and 4 (M = W). Compounds 2–4 were identified and characterized by elemental analysis and multinuclear NMR (¹H-, ¹³C-, and ³¹P-NMR) and IR spectroscopy. A crystal-structure determination of complex 3 was carried out.

Introduction. – In an extension of our interest and the interest of others [1] on the synthesis and solid-state structures of phosphorus(III) ligands containing direct P–N bonds and their derivatives [2][3], as these are interesting in the field of medicinal [4–7] and catalytic chemistry [8–10], as well as herbicidal, neuroactive, and antimicrobial agents [11-13], we herein report the synthesis and spectroscopic properties of group-6-metal carbonyl complexes **2–4** and the crystal structure of **3**.

Experimental. – *General.* All experiments were carried out under purified dry N_2 by using standard *Schlenk* and vacuum-line techniques. Solvents were dried and freshly distilled under N_2 [14]. The chemicals [M(CO)₆] (M = Cr, Mo, and W) were used as purchased. *N*,*N*-Bis(diphenylphosphino)naph-thalen-1-amine (= *N*-(diphenylphosphino)-*N*-napthalen-1-yl-*P*,*P*-diphenylphosphinous amide; **1**) was prepared according to the method described previously [3]. M.p.: *Gallenkamp* apparatus; open capillaries. IR spectra: *Perkin-Elmer-2000* FT-IR spectrometer; range 4000–400 cm⁻¹; KBr disks; in cm⁻¹. NMR Spectra: *Bruker-Avance-DRX-400* spectrometer; at 400.17 (¹H), 100.63 (¹³C), and 161.98 MHz (³¹P) and 25°; SiMe₄ for ¹H and 85% H₃PO₄ for ³¹P as external standards; δ in ppm. Microanalyses: *Flash-2000* elemental analyzer.

cis-[N,N-*Bis*(*diphenylphosino*-κP)*naphthalen-1-amine*]*tertracarbonylchromium*(0) (=cis-*Tetracarbonyl*[N-(*diphenylphosphino*-κP)-N-*naphthalen-1-yl*-P,P-*diphenylphosphinous amide*-κP]*chromium*; **2**). Ligand **1** (2.00 g, 3.91 mmol) was added to a soln. of $[Cr(CO)_6]$ (0.86 g, 3.91 mmol) in toluene (80 ml), and the mixture was heated under reflux for 36 h. The soln. was filtered, the solvent evaporated, and the dark yellow solid recrystallized from CH₂Cl₂/hexane 1:1 (ν/ν) at 25°: **2** (70%). Yellow crystals. M.p. 180–183°. IR (selected bands): 1888s (br.), 1918s, 2006s (C≡O). ¹H-NMR (CDCl₃): 6.40–7.72 (m, C₁₀H₇ 4 Ph). ¹³C-NMR (CDCl₃): 124.80, 125.17, 125.61, 125.94, 127.09, 127.92, 128.61, 129.59, 130.46, 131.32, 132.56, 134.07, 135.44, 138.75 (C₁₀H₇ and 4 Ph); 221.24 (C≡O_{eq}); 228.17 (C≡O_{ax}). ³¹P-NMR (CDCl₃): 117.41 (s, 2 P). Anal. calcd. for C₃₈H₂₇CrNO₄P₂: C 67.56, H 4.03, N 2.07; found: C 67.58, H 4.05, N 2.04.

© 2013 Verlag Helvetica Chimica Acta AG, Zürich

cis-[N,N-Bis(diphenylphosino- κ P)naphthalen-1-amine]tertracarbonylmolybdenum(0) (=cis-Tetracarbonyl[N-(diphenylphosphino- κ P)-N-naphthalen-1-yl-P,P-diphenylphosphinous amide- κ P]molybdenum; **3**). A mixture of ligand **1** (0.40 g, 0.76 mmol) and [Mo(CO)₆] (0.20 g, 0.76 mmol) in benzene (40 ml) was refluxed for 12 h (\rightarrow dark brown soln.). The solvent was evaporated, the product extracted into hexane (40 ml), and the extract cooled to 4°: **3** (80%). Yellow crystals. M.p. 235–238°. IR (selected bands): 1907s (br.), 1924s, 2023s (C=O). ¹H-NMR (CDCl₃): 6.42–7.68 (m, C₁₀H₇ and 4 Ph). ¹³C-NMR (CDCl₃): 124.69, 125.19, 125.51, 126.98, 127.21, 127.51, 128.23, 128.60, 130.17, 130.92, 131.37, 132.51, 133.92, 139.56 (C₁₀H₇, 4 Ph); 212.37 (C=O_{eq}); 218.37 (C=O_{ax}). ³¹P-NMR (CDCl₃): 9.43 (s, 2 P). Anal. calc. for C₃₈H₂₇MoNO₄P₂: C 63.43, H 3.78, N 1.95; found: C 63.40, H 3.73, N 1.93.

cis-[N,N-*Bis*(*diphenylphosino*-κP)*naphthalen-1-amine*]*tetracarbonyltungsten*(0) (=cis-*Tetracarbonyl*[N-(*diphenylphosphino*-κP)*-N-naphthalen-1-yl*-P,P-*diphenylphosphinous amide*-κP]*tungsten*; **4**). As described for **2**, with [W(CO)₆] (1.38 g, 3.91 mmol) instead of [Cr(CO)₆]: **4** (60%). Light yellow solid. M.p. 160–163°. IR (selected bands): 1889*s* (br.), 1910*s*, 2016*s* (C≡O). ¹H-NMR (CDCl₃): 6.42–7.72 (*m*, 27 H, C₁₀H₇, 4 Ph). ¹³C-NMR (CDCl₃): 124.52, 125.13, 125.98, 126.70, 127.12, 127.30, 128.10, 128.58, 130.16, 130.91, 131.34, 132.44, 133.91, 139.54 (C₁₀H₇, 4 Ph); 203.60 (C≡O_{eq}); 210.65 (C≡O_{ax}).³¹P-NMR (CDCl₃): 70.19 (s, 2 P). Anal. calc. for C₃₈H₂₇NO₄P₂W: C 56.53, H 3.37, N 1.73; found: C 56.52, H 3.38, N 1.75.

Data Collection and Structure Determination of **3**. Crystallographic data are given in Table 1. Data were collected with a Bruker-AXS-Smart-Apex-CCD diffractometer; $\lambda(Cu_{Ka}) = 1.54178$ Å. All observed reflections were used for the determination of the unit-cell parameters. Indexing was performed with SMART [15]. Frames were integrated with the SAINT software package [16]. Absorption correction was performed by the multi-scan method implemented in SADABS [17]. Crystal structures were solved by using SHELXS-97 and refined by using SHELXL-97 contained in the SHELXTL and WinGX-1.70.01 program packages [18]. All non-H-atoms were refined with anisotropic displacement parameters. All H-atoms bonded to C-atoms were placed in geometrically optimized positions and refined with an isotropic displacement parameter relative to the attached atoms. CCDC-876277 conatins the supplementary crystallographic data (excluding structure factors) for the structure of **3**. These data can be obtained free of charge *via* http://www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Crystal Data and Structure Refinement of 3

Formula	C ₃₈ H ₂₇ MoNO ₄ P ₂	Ζ	4
M _r	719.49	ρ_{calcd} [Mg m ⁻³]	1.473
Temp. [K]	100	F(000)	1464
Crystal system	triclinic	Abs. coeff. $[mm^{-1}]$	4.584
Space group	<i>P</i> -1	No. of refl. collected	13393
a [Å]	11.1442(5)	No. of independant refl.	8045
b [Å]	16.7516(6)	R _{int}	0.0304
c [Å]	17.5177(7)	No. of parameters	829
α [°]	89.392(2)	$R_1(I > 2\sigma(I))$	0.0356
β [°]	82.816(3)	wR_2 (all data)	0.0890
γ [°]	89.927(3)	$\Delta ho_{ m max} \left[{ m e} \cdot { m \AA}^{-3} ight]$	0.524
V [Å ³]	3244.4(2)	$\Delta ho_{ m min} \; [{ m e} \cdot { m \AA}^{-3}]$	-0.698

Results and Discussion. – *Synthesis.* The *Scheme* summarizes the synthesis of **2**–**4**. The reaction of ligand **1** with 1 equiv. of $[M(CO)_6]$ (M = Cr, or Mo) under reflux in toluene afforded *cis*- $[Cr(CO)_4(1)]$ (**2**) and *cis*- $[W(CO)_4(1)]$ (**4**), respectively. Moreover, reaction of ligand **1** with 1 equiv. of $[Mo(CO)_6]$ under reflux in benzene gave *cis*- $[Mo(CO)_4(1)]$ (**3**). Compounds **2**–**4** are moderately stable to air and moisture.

Scheme. Preparation of 2-4

Compounds 2-4 were isolated from the reaction solution and fully characterized by elemental analysis, IR and multinuclear NMR spectroscopy. Furthermore, the molecular structure of **3** was elucidated by single crystal X-ray diffraction.

¹*H*-, ¹³*C*-, and ³¹*P*-*NMR Spectra*. Due to the presence of naphthalenyl and phenyl groups and coupling with ³¹*P*, the aromatic region in the ¹*H*-, and ¹³*C*-*NMR* spectra of **2**-**4** was complex and difficult to fully interpret [19]. The ¹*H*-*NMR* spectra of **2**-**4** had the expected pattern characteristic for the organic ligand **1**; the resonances corresponding to the phenyl and naphthalenyl protons displayed overlapped *m* in the region $\delta(H) 6.40-7.72$.

The ¹³C-NMR spectra of the carbonyl ligands of 2-4 showed two signals due to the carbonyl ligands oriented *trans* and *cis* to the P-atoms. The $\delta(C)$ of the carbonyl ligands decreased in the order of Cr > Mo > W coordination, in parallel with the increasing number of electrons in the central metal atom [20].

The ³¹P-NMR signals of **2**–**4** appeared as *s* signals at $\delta(P)$ 117.41 (**2**), 93.43 (**3**), and 70.19 (**4**), indicating two equivalent P-atoms. The $\delta(P)$ increased upon coordination of ligand **1** ($\delta(P)$ 63.46) with the metal center, the shift being *ca*. 54 ppm for **2**, *ca*. 30 ppm of **3** and *ca*. 7 ppm for **4**, and the $\delta(P)$ decreased in the order of Cr > Mo > W coordination, in agreement with the observation that such a $\delta(P)$ should decrease as one descends in a given periodic group [21].

IR Spectra and Yields. The IR spectra of 2-4 showed bands in the range 1888–2023 cm⁻¹ due to the $\tilde{\nu}(C\equiv O)$ stretching typical for *cis*-[M(CO)₄L₂] complexes [22]. The carbonyl frequencies of the complexes 2-4 were very near those of closely related complexes with ligands in which the P-atom is bonded to C-atoms only. The absence of any marked effect shows that the replacement of CH or CHR by NR does not greatly change the ability of the P-atoms to accept electrons from the metal [23]. Complexes 2-4 were obtained in 60-80% yield.

Molecular Structure of **3**. Crystals of **3** were obtained as described in the *Exper. Part.* Complex **3** crystallized in the triclinic space group $P\overline{1}$. Selected interatomic distances and angles are collected in *Table 2*, and the molecular structure is depicted in the *Figure.*

The X-ray structure of **3** contains two crystallographically independent molecules, **3a** and **3b** (*Fig.*), in the asymmetric unit. These differ in the orientation of the naphthalenyl group. The crystal structure of **3** shows a distorted octahedral environment around the Mo-atom surrounded by four terminal CO ligands and two P-centers.

3a		3b	
Mo1-C(1)	2.039(5)	Mo2–C(39)	2.048(5)
Mo(1)–C(2)	1.990(4)	Mo(2)-C(40)	2.001(4)
Mo(1)–C(3)	2.001(5)	Mo(2)–C(41)	2.016(5)
Mo(1)–C(4)	2.034(5)	Mo(2)–C(42)	2.020(5)
Mo(1)–P(1)	2.5036(9)	Mo(2) - P(3)	2.4755(10)
Mo(1)–P(2)	2.4925(10)	Mo(2) - P(4)	2.4898(9)
P(1)–N(1)	1.723(3)	P(3)–N(2)	1.715(3)
P(2)–N(1)	1.710(3)	P(4)–N(2)	1.725(3)
P(1)–C(23)	1.817(4)	P(3)–C(43)	1.830(4)
P(1)–C(17)	1.832(4)	P(3)–C(49)	1.818(4)
P(2)–C(11)	1.822(4)	P(4)-C(65)	1.814(4)
P(2)–C(5)	1.825(4)	P(4)-C(71)	1.829(4)
N(1)-C(29)	1.459(4)	N(2)–C(55)	1.446(4)
Σ angles at N(1)	359.93	Σ angles at N(2)	359.93
P(1)-Mo(1)-P(2)	65.94(3)	P(3)-Mo(2)-P(4)	66.14(3)
P(1)-Mo(1)-C(1)	91.96(10)	P(3)-Mo(2)-C(39)	92.19(11)
P(1)-Mo(1)-C(2)	165.15(12)	P(3)-Mo(2)-C(40)	98.82(12)
P(1)-Mo(1)-C(3)	98.63(10)	P(3)-Mo(2)-C(41)	165.76(11)
P(1)-Mo(1)-C(4)	93.18(10)	P(3)-Mo(2)-C(42)	87.55(11)
P(2)-Mo(1)-C(1)	92.77(12)	P(4)-Mo(2)-C(39)	89.96(9)
P(2)-Mo(1)-C(2)	99.23(12)	P(4)-Mo(2)-C(40)	164.87(12)
P(2)-Mo(1)-C(3)	164.46(11)	P(4)-Mo(2)-C(41)	100.00(10)
P(2)-Mo(1)-C(4)	93.39(11)	P(4)-Mo(2)-C(42)	91.41(10)
P(1)-N(1)-P(2)	104.73(16)	P(2)-N(2)-P(4)	103.93(15)
N(1)–P(1)–Mo1	93.62(10)	N(2)-P(3)-Mo2	94.70(11)
N(1)–P(2)–Mo1	94.32(11)	N(2)–P(4)–Mo2	93.94(10)
N(1)-P(1)-C(17)	103.61(16)	N(2)-P(3)-C(43)	107.76(16)
N(1)-P(1)-C(23)	106.24(16)	N(2) - P(3) - C(49)	109.09(15)
N(1)-P(2)-C(5)	108.39(16)	N(2)-P(4)-C(65)	107.42(16)
N(1)-P(2)-C(11)	107.06(16)	N(2)-P(4)-C(71)	107.81(17)
C(17)–P(1)–C(23)	104.72(17)	C(43) - P(3) - C(49)	100.38(17)
C(5)-P(2)-C(11)	101.62(18)	C(65)-P(4)-C(71)	102.22(17)
P(2)–Mo(1)–P(1)–N(1)	7.6(1)	P(3)-Mo(2)-P(4)-N(2)	7.4(1)

Table 2. Selected Bond Lengths [Å] and Bond Angles [°] of 3a and 3b

The ability of compound **1** to act as a bidentate *P,P'*-chelating ligand to the Moatom results in the formation of a four-membered metallacycle, *i.e.*, P–Mo–P–N, that is nearly planar with a torsion angle P–Mo–P–N of $7.6(1)^{\circ}$ in **3a** and $7.4(1)^{\circ}$ in **3b** with a smaller P–Mo–P bite angle $(65.94(3)^{\circ}$ (**3a**) and $66.14(3)^{\circ}$ (**3b**)) and larger P–N–P bond angle $(104.73(16)^{\circ}$ (**3a**) and $103.93(15)^{\circ}$ (**3b**)).

A comparison of the P-Mo-P and P-N-P bond angles of **3a** and **3b** (*Table 2*) with those of the four-membered ring of the similar *cis*-chelated tetracarbonylmolybdenum(0) complexes **5**-9, tetracarbonylchromium(0) complexes **10**-**12**, and tetracarbonyltungsten(0) complexes **13** and **14** (*Table 3*) showed that the P-Mo-P bite angles in **3a** and **3b** are slightly larger than those in **5**-9, **13**, and **14** and smaller than those in **10**-**12**. The P-N-P bond angles in **3a** and **3b** are larger than those in **5**-**8**, **10**-**12**, and **13** and smaller than those in **9** and **14**. The P-M-P bite angles in *cis*-chelated tetracarbonylchromium(0) complexes **10**-**12** are in average 67.98°, being about 2°

Figure. *Molecular structure of the two independent molecules* a) **3a** *and* b) **3b**. H-Atoms are omitted for clarity.

Complex	No.	Ring syst.	N-P (av.) [Å] ^a)	M-P (av.) [Å] ^a)	P-M-P [°]	[∘] d−N−d	Ref.
cis -[Mo(CO) ₄ {(P(OC ₆ H ₄ OMe- o) ₂) ₂ NPh}]	S	4	1.687	2.499	65.02(4)	102.40(2)	[24]
$cis-[1,4-(Mo(CO)_4)_2](Ph_2P)_2NCH_2)_2C_6H_4]$	9	4	1.713	2.506	65.14(1)	103.39(9)	[25]
cis-[Mo(CO) ₄ [PhN(P(OC ₆ H ₃ (OMe- o)(C ₃ H ₅ - p)) ₂]]	٢	4	1.709	2.439	(5.29(2))	100.70(11)	[26]
cis-[Mo(CO) ₄ [(Ph ₂ P) ₂ N(o -C ₆ H ₄ OMe)]]	8	4	1.729	2.499	65.78(2)	103.43(8)	[27]
cis-[Mo(CO) ₄ [(Ph ₂ P) ₂ NH]] · MeCN	6	4	1.685	2.498	(65.29(6))	106.20(2)	[28]
cis-[Cr(CO) ₄ [((o -MeOC ₆ H ₄) ₂ P) ₂ NMe]]	10	4	1.699	2.364	67.54(2)	101.24(7)	[29]
cis-[$Cr(CO)_4[(Ph_2P)_2NPr]]$	11	4	1.713	2.350	67.82(4)	99.86(11)	[30]
cis-[$Cr(CO)_4[(Ph_2P)_2NH]]$	12	4	1.692	2.354	68.58(2)	103.24(9)	[31]
$cis-[W(CO)_4[PhN(P(OC_6H_3(OMe-o)(C_3H_5-p))_2)]$	13	4	1.709	2.433	65.40(2)	100.52(13)	[26]
cis -[W(CO) ₄ {(Ph ₂ P) ₂ NH}]	14	4	1.673	2.492	64.70(2)	105.70(9)	[31]
cis -[Mo(CO) ₄ {PPh ₂ NH ₂ }] ₂]	15	I	1.680	2.526	90.06(2)	I	[32]
cis -[Mo(CO) ₄ {PPh ₂ NH'Bu} ₂]	16	I	1.665	2.545	95.44(3)	I	[33]
$trans$ -[Mo(CO) ₄ {PPh ₂ N(H)C ₆ H ₁₁ } ₂]	17	I	1.679	2.046	180.0	I	[34]
cis-[Mo(CO) ₄ [MeC ₆ H ₃ (PNHPPh ₂) ₂ .3,4]]	18	7	1.703	2.494	84.6(1)	I	[35]
a) av — averaged							

Table 3. Selected Tetracarbonyl(Group-6-Metal) Complexes with Phosphinoamine Ligands

averaged.) av.= wider than the average value in the *cis*-chelated tetracarbonylmolybdenum(0) complexes **3a** and **3b** (averaged 66.04°).

The P–Mo–P bite angles in **3a** and **3b** are relatively close to each other and significantly lower than the ideal 90° in a regular square-planar geometry. Apparently, the presence of the naphthalenyl and phenyl groups decreases the P–Mo–P bite angle, presumably as a result of steric reasons, as the relatively bulky naphthalenyl and phenyl groups occupy much of the lateral space surrounding the P–Mo–P–N ring, which leads to distorted square-planar coordination geometry around the Mo-atom with the phosphinoamine moieties coordinated in a mutual *cis*-fashion, in agreement with the spectroscopic data. The P–N–P bond angles $(104.73(16)^{\circ}$ (**3a**) and $103.93(15)^{\circ}$ (**3b**)) are significantly smaller than those in the free diphosphinoamine ligands [24][36] due to the formation of a strained four-membered chelate ring.

The napthalenyl moietes in **3a** and **3b** are almost planar and virtually perpendicular to the P–Mo–P–N planes. A planar environment would be expected for the three-coordinate N-atoms in **3a** and **3b**, and the sums of bond angles in **3a** and **3b** are indeed close to 360° (*Table 2*).

The P–Mo–C(*trans*) angles of **3a** (164.46(11)° and 165.15(12)°) and **3b** (164.87(12)° and 165.76(11)°) differ significantly from 180°. The variations of the *trans* angles (0.69 (**3a**) and 0.89° (**3b**)) are smaller than those of **5** (162.39(13)° *vs.* 165.83(15)°), **6** (162.74(7)° *vs.* 164.62(7)°), and **9** (164.70(1) *vs.* 169.00(1)°).

The average P–N bond distances in **3a** (1.717 Å) and **3b** (1.720 Å) are essentially the same and within the expected value range in comparison to the similar *cis*-chelated tetracarbonyl complexes **5**–**14** (*Table 3*), but they are shorter than the sum of the *Pauling* covalent radii (1.77 Å), as expected due to P–N π -bonding. Consistent with this, the N-atom is nearly planar as evidenced by the sum of angles about the N-atom (359.93° (**3a**) and 359.93° (**3b**)). Also, the average P–N bond distances in **3a** and **3b** are slightly shorter than those in the free diphosphinoamine ligands [24][36], which clearly indicate an enhancement of π -bonding in the P–N unit.

The Mo–P bond distances are 2.4925(10) and 2.5036(9) Å in **3a** and 2.4755(10) and 2.4898(9) Å in **3b**. The two Mo–P bond distances in **3a** or **3b** are relatively different. Apparently, the large steric constraints in the ligand prevent an appropriate orbital overlap when the two Mo–P bonds are equal and coplanar with the Mo(CO)₄ moiety. The average Mo–P bond distances in **3a** (2.498 Å) and **3b** (2.483 Å) are within the expected value range in comparison to similar *cis*-chelated tetracarbonylmolybde-num(0) complexes 5-9 (averaged 2.488 Å), slightly longer than those in tetracarbonyltungsten(0) complexes 13 and 14 (averaged 2.463 Å), and shorter than those in tetracarbonylchromium(0) complexes 10-12 (averaged 2.356 Å) due to the small atomic radius of chromium.

The Mo–C bond distances are 1.990(4) - 2.039(5) Å for **3a** and 2.001(4) - 2.048(5) Å for **3b**. The shorter Mo–C bond is *trans* to the longer Mo–P bond, which is in agreement with a *trans* effect of the donors (P < C \equiv O).

It is interesting to note that the Mo–P bond lengths in **15** and **16** (*Table 3*) are larger than those in **3a** and **3b**, which can be explained by the increased steric crowding caused by the two ligands in *cis* positions, while the Mo–P bond lengths in **17** are shorter than those in both **3a** and **3b**, probably due to relative *trans* influences of the phosphino and carbonyl ligands.

The P–Mo–P bite angles of **3a** and **3b** are much smaller than the P–Mo–P of the seven-membered ring in **18** (*Table 3*). We see that the P–M–P bite angle is dependent only on the ligand and the type of transition metal. The aromatic rings in **3a** and **3b**, as expected, have usual bond lengths and angles.

Conclusions. – We have shown the successful synthesis of group-6 transition metal tetracarbonyl complexes 2-4 of ligand **1**. All these new complexes were characterized by elemental analysis, IR, and multinuclear NMR spectroscopy. The ligand showed a clear tendency to coordinate in a *cis*-fashion to these transition metals, as indicated by ³¹P-NMR spectroscopy. For the complex *cis*- $[Mo(CO)_4(1)](3)$, the molecular structure was determined.

We would like to thank the *Deanship of Scientific Research* at the Taibah University for funding (Res. No. 967/433).

REFERENCES

- H. T. Al-Masri, J. Sieler, E. Hey-Hawkins, *Appl. Organomet. Chem.* 2003, *17*, 63; H. T. Al-Masri, J. Sieler, E. Hey-Hawkins, *Appl. Organomet. Chem.* 2003, *17*, 641; H. T. Al-Masri, J. Sieler, P. Lönnecke, S. Blaurock, K. Domasevitch, E. Hey-Hawkins, *Tetrahedron* 2004, *60*, 333; H. T. Al-Masri, J. Sieler, P. Lönnecke, P. C. Junk, E. Hey-Hawkins, *Inorg. Chem.* 2004, *43*, 7162; H. T. Al-Masri, J. Sieler, P. C. Junk, K. Domasevitch, E. Hey-Hawkins, *J. Organomet. Chem.* 2005, *690*, 469; H. T. Al-Masri, J. Sieler, S. Blaurock, P. Lönnecke, P. Junk, E. Hey-Hawkins, *J. Organomet. Chem.* 2005, *690*, 469; H. T. Al-Masri, J. Sieler, S. Blaurock, P. Lönnecke, P. Junk, E. Hey-Hawkins, *Z. Anorg. Allg. Chem.* 2005, *631*, 518; H. T. Al-Masri, J. Baldamus, E. Hey-Hawkins, *Polyhedron* 2009, *28*, 3515.
- [2] H. T. Al-Masri, A. H. Emwas, Z. A. Al-Talla, M. H. Alkordi, *Phosphorus, Sulfur Silicon Relat. Elem.* 2012, 187, 1082.
- [3] H. T. Al-Masri, Z. Anorg. Allg. Chem. 2012, 638, 112.
- [4] S. J. Berners-Price, P. J. Sadler, *Struct. Bond. (Berlin)* 1988, 70, 27–102; R. Meijboom, R. J. Bowen, S. J. Berners-Price, *Coord. Chem. Rev.* 2009, 253, 325.
- [5] F. R. Hartley, 'The Chemistry of Organophosphorus Compounds', John Wiley & Sons, Manchester, 1990, Vol. 1, pp. 255–294; F. Agbossou, F. Carpentier, J. F. Hapiot, I. Suisse, A. Mortreux, *Coord. Chem. Rev.* 1998, *178–180*, 1615; Z. Fei, P. J. Dyson, *Coord. Chem. Rev.* 2005, 249, 2056.
- [6] J. Reedijk, Chem. Commun. 1996, 801.
- [7] J. Y. Zhang, J. J. Vittal, Keat, W. Henderson, J. R. Wheaton, I. H. Hall, T. S. Andy Hor, Y. K. Yan, J. Organomet. Chem. 2002, 650, 123.
- [8] M. Aydmar, A. Baysal, B. Gümgüm, J. Organomet. Chem. 2003, 693, 3810, and ref. cit. therein.
- [9] E. Killian, K. Blann, A. Bollmann, J. T. Dixon, S. Kuhlmann, M. C. Maumela, H. Maumela, D. H. Morgan, P. Nongodlwana, M. J. Overett, M. Pretorius, K. Höfener, P. Wasserscheid, J. Mol. Catal. A 2007, 270, 214.
- [10] I. Bachert, I. Bartusseck, P. Braunstein, E. Guillon, J. Rose, G. Kickelbick, J. Organomet. Chem. 1999, 580, 257.
- [11] P. Bhattacharyya, T. Q. Ly, A. M. Z. Slawin, J. D. Woollins, Polyhedron 2001, 20, 1803.
- [12] P. Kafarski, P. Mastalerz, 'Aminophosphonates: Natural Occurrence, Biochemistry and Biological Properties', in 'Beiträge zur Wirkstofforschung', Heft 21, Eds. P. Oehme, H. Löwe, and E. Gores, Akademie-Industrie-Komplex Arzneimittelforschung, Akademie der Wissenschaften der DDR, Institut für Wirkstofforschung, Berlin, DDR, 1984.
- [13] S. Priya, M. S. Balakrishna, J. T. Mague, Inorg. Chem. Commun. 2001, 4, 437.
- [14] D. D. Perrin, W. L. F. Armarego, 'Purification of Laboratory Chemicals', 3rd edn., Pergamon, New York, 1988.
- [15] SMART 5.625, Bruker AXS Inc., Madison, 2001.
- [16] SAINT 6.28A, Bruker AXS Inc., Madison, 2001.

- [17] G. M. Sheldrick, SADABS, a Program for Empirical Absorption Correction, University of Göttingen, Germany, 1996.
- [18] G. M. Sheldrick, SHELXTL 6.10, Bruker AXS Inc., Madison, 2000; L. Farrugia, J. Appl. Crystallogr. 1999, 32, 837; G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112; G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467.
- [19] A. Karacar, M. Freytag, H. Thönnessen, J. Ömelanczuk, P. G. Jones, R. Bartsch, R. Schmeltzer, *Heteroat. Chem.* 2001, 12, 102.
- [20] L. Hirsivaara, M. Haukka, S. Jääskeläinen, R. H. Laitinen, E. Niskanen, T. A. Pakkanen, J. Pursiainen, J. Organomet. Chem. 1999, 579, 45.
- [21] L. Hirsivaara, L. Guerricabeitia, M. Haukka, P. Suomalainen, R. H. Laitinen, T. A. Pakkanen, J. Pursiainen, *Inorg. Chim. Acta* 2000, 307, 47.
- [22] M. S. Balakrishna, T. K. Prakasha, S. S. Krishnamurthy, U. Siriwardane, N. S. Hosmane, J. Organomet. Chem. 1990, 390, 203.
- [23] D. S. Payne, A. P. Walker, J. Chem. Soc. 1966, 498.
- [24] M. S. Balakrishna, P. P. George, J. T. Mague, J. Organomet. Chem. 2004, 689, 3388.
- [25] K. G. Gaw, M. B. Smith, J. W. Steed, J. Organomet. Chem. 2002, 664, 294.
- [26] M. S. Balakrishna, S. Naik, S. M. Mobin, Inorg. Chim. Acta 2010, 363, 3010.
- [27] K. G. Gaw, M. B. Smith, A. M. Z. Slawin, New J. Chem. 2000, 24, 429.
- [28] M. Knorr, C. Strohmann, Organometallics 1999, 18, 248
- [29] T. Agapie, M. W. Day, L. M. Henling, J. A. Labinger, J. E. Bercaw, Organometallics 2006, 25, 2733.
- [30] L. E. Bowen, M. F. Haddow, A. G. Orpen , D. F. Wass, J. Chem. Soc., Dalton Trans. 2007, 1160.
- [31] V. Kirin, P. W. Roesky, Eur. J. Inorg. Chem. 2004, 1045.
- [32] G. M. Gray, Y. Zhang, J. Crystallogr. Spectrosc. Res. 1993, 23, 711.
- [33] O. Kühl, S. Blaurock, J. Sieler, E. Hey-Hawkins, Polyhedron 2001, 20, 111.
- [34] S. Priya, M. S. Balakrishna, J. T. Mague, J. Organomet. Chem. 2003, 679, 116.
- [35] T. Q. Ly, A. M. Z. Slawin, J. D. Woollins, J. Chem. Soc., Dalton Trans. 1997, 1611.
- [36] N. Biricik, C. Kayan, B. Gümgüm, Z. Fei, R. Scopelliti, P. J. Dyson, N. Gurbuz, I. Özdemir, *Inorg. Chim. Acta* 2010, 363, 1039.

Received June 21, 2012