Synthesis and Characterization of Carbonyl Group-6-Metal Derivatives with Ligand $\boldsymbol{N}, \boldsymbol{N}$-Bis(diphenylphosphino)naphthalen-1-amine ($=\boldsymbol{N}$ -
 (Diphenylphosphino)- N-naphthalen-1-yl- P, P-diphenylphosphinous Amide). Molecular Structure of cis-Tetracarbonyl[N-(diphenylphosphino- κP)- N -naphthalen-1-yl- P, P-diphenylphosphinous amide- κP] molybdenum (cis$\left.\left[\mathrm{Mo}(\mathbf{C O})_{4}\left[\mathrm{C}_{10} \mathrm{H}_{7}-\mathbf{1 - N}\left(\mathbf{P P h}_{2}\right)_{2}\right\}\right]\right)$

by Harbi Tomah Al-Masri*a ${ }^{\text {a }}$, Beshir M. Mohamed ${ }^{\text {a }}$), Ziad Moussa ${ }^{\text {b }}$), and Mohamed H. Alkordi ${ }^{\text {c }}$)
${ }^{\text {a }}$) Faculty of Applied Sciences, Department of Applied Chemistry, Taibah University, Madinah 1343, K.S.A. (e-mail: harbialmasri@yahoo.com)
${ }^{\text {b }}$) Faculty of Science, Department of Chemistry, Taibah University, Madinah 344, K.S.A.
${ }^{c}$) King Abdullah University of Science and Technology, Jeddah, Thuwal 23955-6900, K.S.A.

Abstract

The reaction of N, N-bis(diphenylphosphino)naphthalen-1-amine (1) with $\left[\mathrm{M}(\mathrm{CO})_{6}\right](\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, W; 1:1 molar ratio) afforded cis- $\left[\mathrm{M}(\mathrm{CO})_{4}(\mathbf{1})\right] \mathbf{2}(\mathrm{M}=\mathrm{Cr}), \mathbf{3}(\mathrm{M}=\mathrm{Mo})$, and $\mathbf{4}(\mathrm{M}=\mathrm{W})$. Compounds $\mathbf{2}$ 4 were identified and characterized by elemental analysis and multinuclear NMR $\left({ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\right.$, and ${ }^{31} \mathrm{P}-$ NMR) and IR spectroscopy. A crystal-structure determination of complex $\mathbf{3}$ was carried out.

Introduction. - In an extension of our interest and the interest of others [1] on the synthesis and solid-state structures of phosphorus(III) ligands containing direct $\mathrm{P}-\mathrm{N}$ bonds and their derivatives [2][3], as these are interesting in the field of medicinal [47] and catalytic chemistry [8-10], as well as herbicidal, neuroactive, and antimicrobial agents [11-13], we herein report the synthesis and spectroscopic properties of group-6metal carbonyl complexes 2-4 and the crystal structure of 3 .

Experimental. - General. All experiments were carried out under purified dry N_{2} by using standard Schlenk and vacuum-line techniques. Solvents were dried and freshly distilled under N_{2} [14]. The chemicals $\left[\mathrm{M}(\mathrm{CO})_{6}\right](\mathrm{M}=\mathrm{Cr}$, Mo, and W$)$ were used as purchased. N, N-Bis(diphenylphosphino)naph-thalen-1-amine ($=N$-(diphenylphosphino)- N-napthalen-1-yl- P, P-diphenylphosphinous amide; 1) was prepared according to the method described previously [3]. M.p.: Gallenkamp apparatus; open capillaries. IR spectra: Perkin-Elmer-2000 FT-IR spectrometer; range $4000-400 \mathrm{~cm}^{-1} ; \mathrm{KBr}$ disks; in cm^{-1}. NMR Spectra: Bruker-Avance-DRX-400 spectrometer; at $400.17\left({ }^{1} \mathrm{H}\right), 100.63\left({ }^{13} \mathrm{C}\right)$, and $161.98 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right)$ and $25^{\circ} ; \mathrm{SiMe}_{4}$ for ${ }^{1} \mathrm{H}$ and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$ as external standards; δ in ppm. Microanalyses: Flash-2000 elemental analyzer.
cis-/ $\mathrm{N}, \mathrm{N}-$-Bis(diphenylphosino- $\kappa \mathrm{P}$)naphthalen-1-amine]tertracarbonylchromium (0) ($=$ cis-Tetracarbonyl/ N -(diphenylphosphino- $\kappa \mathrm{P}$)- N -naphthalen-1-yl-P,P-diphenylphosphinous amide- $\kappa \mathrm{P}$]chromium; 2). Ligand $1(2.00 \mathrm{~g}, 3.91 \mathrm{mmol})$ was added to a soln. of $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right](0.86 \mathrm{~g}, 3.91 \mathrm{mmol})$ in toluene $(80 \mathrm{ml})$, and the mixture was heated under reflux for 36 h . The soln. was filtered, the solvent evaporated, and the dark yellow solid recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $1: 1(v / v)$ at $25^{\circ}: \mathbf{2}(70 \%)$. Yellow crystals. M.p. 180-183 ${ }^{\circ}$. IR (selected bands): 1888s (br.), 1918s, 2006s (C $\equiv \mathrm{O}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 6.40-7.72$ (m , $\left.\mathrm{C}_{10} \mathrm{H}_{7}, 4 \mathrm{Ph}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 124.80,125.17,125.61,125.94,127.09,127.92,128.61,129.59,130.46$, 131.32, 132.56, 134.07, 135.44, $138.75\left(\mathrm{C}_{10} \mathrm{H}_{7}\right.$ and 4 Ph$) ; 221.24\left(\mathrm{C} \equiv \mathrm{O}_{\mathrm{eq}}\right) ; 228.17\left(\mathrm{C} \equiv \mathrm{O}_{\mathrm{ax}}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right)$: 117.41 (s, 2 P). Anal. calcd. for $\mathrm{C}_{38} \mathrm{H}_{27} \mathrm{CrNO}_{4} \mathrm{P}_{2}$: C 67.56, H 4.03, N 2.07; found: C 67.58, H 4.05, N 2.04.
cis-/N,N-Bis(diphenylphosino- $\kappa \mathrm{P}$)naphthalen-1-amine Itertracarbonylmolybdenum(0) (= cis-Tetracarbonyl/ N -(diphenylphosphino- P P$)-\mathrm{N}$-naphthalen-1-yl-P,P-diphenylphosphinous amide- P P]molybdenum; 3). A mixture of ligand $\mathbf{1}(0.40 \mathrm{~g}, 0.76 \mathrm{mmol})$ and $\left[\mathrm{Mo}(\mathrm{CO})_{6}\right](0.20 \mathrm{~g}, 0.76 \mathrm{mmol})$ in benzene $(40 \mathrm{ml})$ was refluxed for $12 \mathrm{~h}(\rightarrow$ dark brown soln.). The solvent was evaporated, the product extracted into hexane (40 ml), and the extract cooled to $4^{\circ}: \mathbf{3}\left(80 \%\right.$). Yellow crystals. M.p. $235-238^{\circ}$. IR (selected bands): $1907 s$ (br.), 1924s, $2023 \mathrm{~s}(\mathrm{C} \equiv \mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 6.42-7.68\left(\mathrm{~m}, \mathrm{C}_{10} \mathrm{H}_{7}\right.$ and 4 Ph$) .{ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right): 124.69,125.19,125.51,126.98,127.21,127.51,128.23,128.60,130.17,130.92,131.37,132.51,133.92$, $139.56\left(\mathrm{C}_{10} \mathrm{H}_{7}, 4 \mathrm{Ph}\right) ; 212.37\left(\mathrm{C} \equiv \mathrm{O}_{\mathrm{eq}}\right) ; 218.37\left(\mathrm{C} \equiv \mathrm{O}_{\mathrm{ax}}\right) \cdot{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 93.43(\mathrm{~s}, 2 \mathrm{P})$. Anal. calc. for $\mathrm{C}_{38} \mathrm{H}_{27} \mathrm{MoNO}_{4} \mathrm{P}_{2}: \mathrm{C} 63.43$, H 3.78, N 1.95 ; found: C 63.40, H 3.73, N 1.93.
cis-[$\mathrm{N}, \mathrm{N}-$ Bis(diphenylphosino- $\kappa \mathrm{P}$) naphthalen-1-amine Itetracarbonyltungsten(0) (=cis-Tetracarbonyl[N -(diphenylphosphino-кP)-N-naphthalen-1-yl-P,P-diphenylphosphinous amide-кP]tungsten; 4). As described for 2, with $\left[\mathrm{W}(\mathrm{CO})_{6}\right](1.38 \mathrm{~g}, 3.91 \mathrm{mmol})$ instead of $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]: \mathbf{4}(60 \%)$. Light yellow solid. M.p. $160-163^{\circ}$. IR (selected bands): 1889s (br.), 1910s, 2016s (C $\equiv \mathrm{O}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: 6.42-7.72 (m , $\left.27 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}_{7}, 4 \mathrm{Ph}\right) .{ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right): 124.52,125.13,125.98,126.70,127.12,127.30,128.10,128.58$, 130.16, 130.91, 131.34, 132.44, 133.91, $139.54\left(\mathrm{C}_{10} \mathrm{H}_{7}, 4 \mathrm{Ph}\right) ; 203.60\left(\mathrm{C} \equiv \mathrm{O}_{\mathrm{eq}}\right) ; 210.65\left(\mathrm{C} \equiv \mathrm{O}_{\mathrm{ax}}\right){ }^{31} \mathrm{P}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right)$: $70.19(\mathrm{~s}, 2 \mathrm{P})$. Anal. calc. for $\mathrm{C}_{38} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{P}_{2} \mathrm{~W}: \mathrm{C} 56.53, \mathrm{H} 3.37, \mathrm{~N} 1.73$; found: C $56.52, \mathrm{H} 3.38, \mathrm{~N}$ 1.75.

Data Collection and Structure Determination of 3. Crystallographic data are given in Table 1. Data were collected with a Bruker-AXS-Smart-Apex-CCD diffractometer; $\lambda\left(\mathrm{Cu}_{K \alpha}\right)=1.54178 \AA$. All observed reflections were used for the determination of the unit-cell parameters. Indexing was performed with SMART [15]. Frames were integrated with the SAINT software package [16]. Absorption correction was performed by the multi-scan method implemented in SADABS [17]. Crystal structures were solved by using SHELXS-97 and refined by using SHELXL-97 contained in the SHELXTL and WinGX-1.70.01 program packages [18]. All non-H-atoms were refined with anisotropic displacement parameters. All $\mathrm{H}-$ atoms bonded to C -atoms were placed in geometrically optimized positions and refined with an isotropic displacement parameter relative to the attached atoms. CCDC-876277 conatins the supplementary crystallographic data (excluding structure factors) for the structure of $\mathbf{3}$. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Crystal Data and Structure Refinement of $\mathbf{3}$

Formula	$\mathrm{C}_{38} \mathrm{H}_{27} \mathrm{MoNO}_{4} \mathrm{P}_{2}$	Z	4
M_{r}	719.49	$\rho_{\text {calcd }}\left[\mathrm{Mg} \mathrm{m}^{-3}\right]$	1.473
Temp. [K]	100	$F(000)$	1464
Crystal system	triclinic	Abs. coeff. $\left[\mathrm{mm}^{-1}\right]$	4.584
Space group	$P-1$	No. of refl. collected	13393
$a[\AA]$	$11.1442(5)$	No. of independant refl.	8045
$b[\AA]$	$16.7516(6)$	$R_{\text {int }}$	0.0304
$c[\AA]$	$17.5177(7)$	No. of parameters	829
$\alpha\left[{ }^{\circ}\right]$	$89.392(2)$	$R_{1}(I>2 \sigma(I))$	0.0356
$\beta\left[{ }^{\circ}\right]$	$82.816(3)$	$w R_{2}($ all data $)$	0.0890
$\gamma\left[{ }^{\circ}\right]$	$89.927(3)$	$\Delta \rho_{\text {max }}\left[\mathrm{e} \cdot \AA^{-3}\right]$	0.524
$V\left[\AA^{3}\right]$	$3244.4(2)$	$\Delta \rho_{\text {min }}\left[\mathrm{e} \cdot \AA^{-3}\right]$	-0.698

Results and Discussion. - Synthesis. The Scheme summarizes the synthesis of 2-4. The reaction of ligand $\mathbf{1}$ with 1 equiv. of $\left[\mathrm{M}(\mathrm{CO})_{6}\right](\mathrm{M}=\mathrm{Cr}$, or Mo$)$ under reflux in toluene afforded cis-[$\left.\mathrm{Cr}(\mathrm{CO})_{4}(\mathbf{1})\right](\mathbf{2})$ and $c i s-\left[\mathrm{W}(\mathrm{CO})_{4}(\mathbf{1})\right](\mathbf{4})$, respectively. Moreover, reaction of ligand $\mathbf{1}$ with 1 equiv. of $\left[\mathrm{Mo}(\mathrm{CO})_{6}\right]$ under reflux in benzene gave cis$\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathbf{1})\right](\mathbf{3})$. Compounds $\mathbf{2 - 4}$ are moderately stable to air and moisture.

Scheme. Preparation of 2-4

Compounds 2-4 were isolated from the reaction solution and fully characterized by elemental analysis, IR and multinuclear NMR spectroscopy. Furthermore, the molecular structure of $\mathbf{3}$ was elucidated by single crystal X-ray diffraction.
${ }^{1} H$-, ${ }^{13} C$-, and ${ }^{3 l} P$-NMR Spectra. Due to the presence of naphthalenyl and phenyl groups and coupling with ${ }^{31} \mathrm{P}$, the aromatic region in the ${ }^{1} \mathrm{H}$-, and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{2 - 4}$ was complex and difficult to fully interpret [19]. The ${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{2}-\mathbf{4}$ had the expected pattern characteristic for the organic ligand $\mathbf{1}$; the resonances corresponding to the phenyl and naphthalenyl protons displayed overlapped m in the region $\delta(\mathrm{H}) 6.40-7.72$.

The ${ }^{13} \mathrm{C}$-NMR spectra of the carbonyl ligands of $\mathbf{2 - 4}$ showed two signals due to the carbonyl ligands oriented trans and cis to the P-atoms. The $\delta(\mathrm{C})$ of the carbonyl ligands decreased in the order of $\mathrm{Cr}>\mathrm{Mo}>\mathrm{W}$ coordination, in parallel with the increasing number of electrons in the central metal atom [20].

The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ signals of $\mathbf{2 - 4}$ appeared as s signals at $\delta(\mathrm{P}) 117.41(\mathbf{2}), 93.43(\mathbf{3})$, and 70.19 (4), indicating two equivalent P -atoms. The $\delta(\mathrm{P})$ increased upon coordination of ligand $\mathbf{1}(\delta(\mathrm{P}) 63.46)$ with the metal center, the shift being $c a .54 \mathrm{ppm}$ for $\mathbf{2}, c a .30 \mathrm{ppm}$ of 3 and ca. 7 ppm for $\mathbf{4}$, and the $\delta(\mathrm{P})$ decreased in the order of $\mathrm{Cr}>\mathrm{Mo}>\mathrm{W}$ coordination, in agreement with the observation that such a $\delta(\mathrm{P})$ should decrease as one descends in a given periodic group [21].

IR Spectra and Yields. The IR spectra of 2-4 showed bands in the range 1888$2023 \mathrm{~cm}^{-1}$ due to the $\tilde{v}(\mathrm{C} \equiv \mathrm{O})$ stretching typical for cis- $\left[\mathrm{M}(\mathrm{CO})_{4} \mathrm{~L}_{2}\right.$] complexes [22]. The carbonyl frequencies of the complexes 2-4 were very near those of closely related complexes with ligands in which the P -atom is bonded to C -atoms only. The absence of any marked effect shows that the replacement of CH or CHR by NR does not greatly change the ability of the P -atoms to accept electrons from the metal [23]. Complexes $\mathbf{2 - 4}$ were obtained in $60-80 \%$ yield.

Molecular Structure of $\mathbf{3}$. Crystals of $\mathbf{3}$ were obtained as described in the Exper. Part. Complex 3 crystallized in the triclinic space group $P \overline{1}$. Selected interatomic distances and angles are collected in Table 2, and the molecular structure is depicted in the Figure.

The X-ray structure of $\mathbf{3}$ contains two crystallographically independent molecules, 3a and 3b (Fig.), in the asymmetric unit. These differ in the orientation of the naphthalenyl group. The crystal structure of $\mathbf{3}$ shows a distorted octahedral environment around the Mo-atom surrounded by four terminal CO ligands and two P-centers.

Table 2. Selected Bond Lengths $[\AA]$ and Bond Angles $\left[{ }^{\circ}\right]$ of 3a and 3b

3a		3b	
Mo1-C(1)	$2.039(5)$	Mo2-C(39)	2.048(5)
$\mathrm{Mo}(1)-\mathrm{C}(2)$	1.990(4)	$\mathrm{Mo}(2)-\mathrm{C}(40)$	2.001(4)
$\mathrm{Mo}(1)-\mathrm{C}(3)$	2.001(5)	$\mathrm{Mo}(2)-\mathrm{C}(41)$	2.016(5)
$\mathrm{Mo}(1)-\mathrm{C}(4)$	2.034(5)	$\mathrm{Mo}(2)-\mathrm{C}(42)$	2.020(5)
$\mathrm{Mo}(1)-\mathrm{P}(1)$	2.5036(9)	$\mathrm{Mo}(2)-\mathrm{P}(3)$	$2.4755(10)$
$\mathrm{Mo}(1)-\mathrm{P}(2)$	2.4925(10)	$\mathrm{Mo}(2)-\mathrm{P}(4)$	2.4898(9)
$\mathrm{P}(1)-\mathrm{N}(1)$	1.723(3)	$\mathrm{P}(3)-\mathrm{N}(2)$	1.715(3)
$\mathrm{P}(2)-\mathrm{N}(1)$	1.710(3)	$\mathrm{P}(4)-\mathrm{N}(2)$	1.725(3)
$\mathrm{P}(1)-\mathrm{C}(23)$	1.817(4)	$\mathrm{P}(3)-\mathrm{C}(43)$	1.830(4)
$\mathrm{P}(1)-\mathrm{C}(17)$	1.832(4)	$\mathrm{P}(3)-\mathrm{C}(49)$	1.818(4)
$\mathrm{P}(2)-\mathrm{C}(11)$	1.822(4)	$\mathrm{P}(4)-\mathrm{C}(65)$	1.814(4)
$\mathrm{P}(2)-\mathrm{C}(5)$	1.825(4)	$\mathrm{P}(4)-\mathrm{C}(71)$	$1.829(4)$
$\mathrm{N}(1)-\mathrm{C}(29)$	1.459(4)	$\mathrm{N}(2)-\mathrm{C}(55)$	1.446 (4)
Σ angles at $\mathrm{N}(1)$	359.93	Σ angles at $\mathrm{N}(2)$	359.93
$\mathrm{P}(1)-\mathrm{Mo}(1)-\mathrm{P}(2)$	65.94(3)	$\mathrm{P}(3)-\mathrm{Mo}(2)-\mathrm{P}(4)$	66.14(3)
$\mathrm{P}(1)-\mathrm{Mo}(1)-\mathrm{C}(1)$	91.96(10)	$\mathrm{P}(3)-\mathrm{Mo}(2)-\mathrm{C}(39)$	92.19(11)
$\mathrm{P}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	165.15(12)	$\mathrm{P}(3)-\mathrm{Mo}(2)-\mathrm{C}(40)$	98.82(12)
$\mathrm{P}(1)-\mathrm{Mo}(1)-\mathrm{C}(3)$	98.63(10)	$\mathrm{P}(3)-\mathrm{Mo}(2)-\mathrm{C}(41)$	165.76(11)
$\mathrm{P}(1)-\mathrm{Mo}(1)-\mathrm{C}(4)$	93.18(10)	$\mathrm{P}(3)-\mathrm{Mo}(2)-\mathrm{C}(42)$	87.55(11)
$\mathrm{P}(2)-\mathrm{Mo}(1)-\mathrm{C}(1)$	92.77(12)	$\mathrm{P}(4)-\mathrm{Mo}(2)-\mathrm{C}(39)$	89.96(9)
$\mathrm{P}(2)-\mathrm{Mo}(1)-\mathrm{C}(2)$	99.23(12)	$\mathrm{P}(4)-\mathrm{Mo}(2)-\mathrm{C}(40)$	164.87(12)
$\mathrm{P}(2)-\mathrm{Mo}(1)-\mathrm{C}(3)$	164.46(11)	$\mathrm{P}(4)-\mathrm{Mo}(2)-\mathrm{C}(41)$	100.00(10)
$\mathrm{P}(2)-\mathrm{Mo}(1)-\mathrm{C}(4)$	93.39(11)	$\mathrm{P}(4)-\mathrm{Mo}(2)-\mathrm{C}(42)$	91.41(10)
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$	104.73(16)	$\mathrm{P}(2)-\mathrm{N}(2)-\mathrm{P}(4)$	103.93(15)
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{Mo} 1$	93.62(10)	$\mathrm{N}(2)-\mathrm{P}(3)-\mathrm{Mo} 2$	94.70(11)
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{Mo} 1$	94.32(11)	$\mathrm{N}(2)-\mathrm{P}(4)-\mathrm{Mo} 2$	93.94(10)
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(17)$	103.61(16)	$\mathrm{N}(2)-\mathrm{P}(3)-\mathrm{C}(43)$	107.76(16)
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(23)$	106.24(16)	$\mathrm{N}(2)-\mathrm{P}(3)-\mathrm{C}(49)$	109.09(15)
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{C}(5)$	108.39(16)	$\mathrm{N}(2)-\mathrm{P}(4)-\mathrm{C}(65)$	107.42(16)
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{C}(11)$	107.06(16)	$\mathrm{N}(2)-\mathrm{P}(4)-\mathrm{C}(71)$	107.81(17)
$\mathrm{C}(17)-\mathrm{P}(1)-\mathrm{C}(23)$	104.72(17)	$\mathrm{C}(43)-\mathrm{P}(3)-\mathrm{C}(49)$	100.38(17)
$\mathrm{C}(5)-\mathrm{P}(2)-\mathrm{C}(11)$	101.62(18)	$\mathrm{C}(65)-\mathrm{P}(4)-\mathrm{C}(71)$	102.22(17)
$\mathrm{P}(2)-\mathrm{Mo}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	7.6(1)	$\mathrm{P}(3)-\mathrm{Mo}(2)-\mathrm{P}(4)-\mathrm{N}(2)$	7.4(1)

The ability of compound $\mathbf{1}$ to act as a bidentate P, P^{\prime}-chelating ligand to the Moatom results in the formation of a four-membered metallacycle, i.e., $\mathrm{P}-\mathrm{Mo}-\mathrm{P}-\mathrm{N}$, that is nearly planar with a torsion angle $\mathrm{P}-\mathrm{Mo}-\mathrm{P}-\mathrm{N}$ of $7.6(1)^{\circ}$ in $\mathbf{3 a}$ and $7.4(1)^{\circ}$ in $\mathbf{3 b}$ with a smaller $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ bite angle (65.94(3) $)^{\circ}$ (3a) and 66.14(3) ${ }^{\circ}$ (3b)) and larger $\mathrm{P}-\mathrm{N}-\mathrm{P}$ bond angle (104.73(16) $)^{\circ}(\mathbf{3 a})$ and $\left.103.93(15)^{\circ}(\mathbf{3 b})\right)$.

A comparison of the $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ and $\mathrm{P}-\mathrm{N}-\mathrm{P}$ bond angles of $\mathbf{3 a}$ and $\mathbf{3 b}$ (Table 2) with those of the four-membered ring of the similar cis-chelated tetracarbonylmolybdenum(0) complexes 5-9, tetracarbonylchromium(0) complexes 10-12, and tetracarbonyltungsten(0) complexes $\mathbf{1 3}$ and $\mathbf{1 4}$ (Table 3) showed that the $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ bite angles in $\mathbf{3 a}$ and $\mathbf{3 b}$ are slightly larger than those in $\mathbf{5 - 9}, \mathbf{1 3}$, and $\mathbf{1 4}$ and smaller than those in $\mathbf{1 0}$ 12. The $\mathrm{P}-\mathrm{N}-\mathrm{P}$ bond angles in $\mathbf{3 a}$ and $\mathbf{3 b}$ are larger than those in $\mathbf{5 - 8}, \mathbf{1 0}-\mathbf{1 2}$, and $\mathbf{1 3}$ and smaller than those in 9 and 14. The $\mathrm{P}-\mathrm{M}-\mathrm{P}$ bite angles in cis-chelated tetracarbonylchromium(0) complexes $\mathbf{1 0}-\mathbf{1 2}$ are in average 67.98°, being about 2°
a)

b)

Figure. Molecular structure of the two independent molecules a) 3a and b) 3b. H-Atoms are omitted for clarity.
Table 3. Selected Tetracarbonyl(Group-6-Metal) Complexes with Phosphinoamine Ligands

Complex	No.	Ring syst.	$\mathrm{N}-\mathrm{P}$ (av.) [$\AA]^{\text {a }}$)	$\mathrm{M}-\mathrm{P}(\mathrm{av}.)[\AA]^{\text {a }}$)	$\mathrm{P}-\mathrm{M}-\mathrm{P}\left[{ }^{\circ}\right]$	$\mathrm{P}-\mathrm{N}-\mathrm{P}\left[{ }^{\circ}\right]$	Ref.
$\left.c i s-\left[\mathrm{Mo}(\mathrm{CO})_{4} 4\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2} \mathrm{NPh}\right\}\right]$	5	4	1.687	2.499	65.02(4)	102.40(2)	[24]
cis-[1,4-($\left.\left.\left.\mathrm{Mo}(\mathrm{CO})_{4}\right)_{2}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]$	6	4	1.713	2.506	65.14(1)	103.39(9)	[25]
cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3}(\mathrm{OMe}-o)\left(\mathrm{C}_{3} \mathrm{H}_{5}-p\right)\right)_{2}\right)_{2}\right\}\right]$	7	4	1.709	2.439	65.29(2)	100.70(11)	[26]
cis-[$\left.\mathrm{Mo}(\mathrm{CO})_{4}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{~N}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)\right\}\right]$	8	4	1.729	2.499	65.78(2)	103.43(8)	[27]
cis $-\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}\right\}\right] \cdot \mathrm{MeCN}$	9	4	1.685	2.498	65.29(6)	106.20(2)	[28]
cis- $\left[\mathrm{Cr}(\mathrm{CO})_{4}\left\{\left(\left(\mathrm{o}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{P}\right)_{2} \mathrm{NMe}\right\}\right]$	10	4	1.699	2.364	67.54(2)	101.24(7)	[29]
cis-[$\left.\mathrm{Cr}(\mathrm{CO})_{4}\left\{\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{~N}^{\mathrm{i}} \mathrm{Pr}\right\}\right]$	11	4	1.713	2.350	67.82(4)	99.86(11)	[30]
cis- [$\left.\left.\mathrm{Cr}(\mathrm{CO})_{4}\left(1 \mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}\right\}\right]$	12	4	1.692	2.354	68.58(2)	103.24(9)	[31]
cis $-\left[\mathrm{W}(\mathrm{CO})_{4}\left\{\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3}(\mathrm{OMe}-o)\left(\mathrm{C}_{3} \mathrm{H}_{5}-p\right)\right)_{2}\right)_{2}\right\}\right]$	13	4	1.709	2.433	65.40(2)	100.52(13)	[26]
cis-[$\left.\left.\mathrm{W}(\mathrm{CO})_{4} 4\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NH}\right\}\right]$	14	4	1.673	2.492	64.70(2)	105.70(9)	[31]
cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2} \mathrm{NH}_{2}\right\}_{2}\right]$	15	-	1.680	2.526	90.06(2)	-	[32]
cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2} \mathrm{NH}^{\prime} \mathrm{Bu}\right\}_{2}\right]$	16	-	1.665	2.545	95.44(3)	-	[33]
trans-[$\left.\mathrm{Mo}(\mathrm{CO})_{4}\left[\mathrm{PPh}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{11}\right\}_{2}\right]$	17	-	1.679	2.046	180.0	-	[34]
cis-[$\left.\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{MeC}_{6} \mathrm{H}_{3}\left(\mathrm{PNHPPh}_{2}\right)_{2-} 3,4\right\}\right]$	18	7	1.703	2.494	84.6(1)	-	[35]

${ }^{\text {a }}$) av. = averaged.
wider than the average value in the cis-chelated tetracarbonylmolybdenum(0) complexes 3a and 3b (averaged 66.04°).

The $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ bite angles in $\mathbf{3 a}$ and $\mathbf{3 b}$ are relatively close to each other and significantly lower than the ideal 90° in a regular square-planar geometry. Apparently, the presence of the naphthalenyl and phenyl groups decreases the $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ bite angle, presumably as a result of steric reasons, as the relatively bulky naphthalenyl and phenyl groups occupy much of the lateral space surrounding the $\mathrm{P}-\mathrm{Mo}-\mathrm{P}-\mathrm{N}$ ring, which leads to distorted square-planar coordination geometry around the Mo-atom with the phosphinoamine moieties coordinated in a mutual cis-fashion, in agreement with the spectroscopic data. The $\mathrm{P}-\mathrm{N}-\mathrm{P}$ bond angles (104.73(16) ${ }^{\circ} \mathbf{(3 a)}$ and $\left.103.93(15)^{\circ}(\mathbf{3 b})\right)$ are significantly smaller than those in the free diphosphinoamine ligands [24][36] due to the formation of a strained four-membered chelate ring.

The napthalenyl moietes in $\mathbf{3 a}$ and $\mathbf{3 b}$ are almost planar and virtually perpendicular to the $\mathrm{P}-\mathrm{Mo}-\mathrm{P}-\mathrm{N}$ planes. A planar environment would be expected for the threecoordinate N -atoms in $\mathbf{3 a}$ and $\mathbf{3 b}$, and the sums of bond angles in $\mathbf{3 a}$ and $\mathbf{3 b}$ are indeed close to 360° (Table 2).

The $\mathrm{P}-\mathrm{Mo}-\mathrm{C}($ trans $)$ angles of $\mathbf{3 a}\left(164.46(11)^{\circ}\right.$ and $\left.165.15(12)^{\circ}\right)$ and $\mathbf{3 b}\left(164.87(12)^{\circ}\right.$ and $\left.165.76(11)^{\circ}\right)$ differ significantly from 180°. The variations of the trans angles (0.69 (3a) and $\left.0.89^{\circ}(\mathbf{3 b})\right)$ are smaller than those of $\mathbf{5}\left(162.39(13)^{\circ}\right.$ vs. $\left.165.83(15)^{\circ}\right)$, $\mathbf{6}$ (162.74(7) ${ }^{\circ}$ vs. $\left.164.62(7)^{\circ}\right)$, and 9 (164.70(1) vs. $\left.169.00(1)^{\circ}\right)$.

The average $\mathrm{P}-\mathrm{N}$ bond distances in $\mathbf{3 a}(1.717 \AA$) and $\mathbf{3 b}(1.720 \AA)$ are essentially the same and within the expected value range in comparison to the similar cis-chelated tetracarbonyl complexes 5-14 (Table 3), but they are shorter than the sum of the Pauling covalent radii $(1.77 \AA)$, as expected due to $\mathrm{P}-\mathrm{N} \pi$-bonding. Consistent with this, the N -atom is nearly planar as evidenced by the sum of angles about the N -atom (359.93° ($\mathbf{3 a}$) and $359.93^{\circ}(\mathbf{3 b})$). Also, the average $\mathrm{P}-\mathrm{N}$ bond distances in $\mathbf{3 a}$ and $\mathbf{3 b}$ are slightly shorter than those in the free diphosphinoamine ligands [24][36], which clearly indicate an enhancement of π-bonding in the $\mathrm{P}-\mathrm{N}$ unit.

The Mo-P bond distances are 2.4925(10) and 2.5036(9) \AA in $\mathbf{3 a}$ and $2.4755(10)$ and $2.4898(9) \AA$ in $\mathbf{3 b}$. The two Mo-P bond distances in 3a or 3b are relatively different. Apparently, the large steric constraints in the ligand prevent an appropriate orbital overlap when the two $\mathrm{Mo}-\mathrm{P}$ bonds are equal and coplanar with the $\mathrm{Mo}(\mathrm{CO})_{4}$ moiety. The average Mo-P bond distances in 3a ($2.498 \AA$) and 3b ($2.483 \AA$) are within the expected value range in comparison to similar cis-chelated tetracarbonylmolybdenum(0) complexes 5-9 (averaged $2.488 \AA$), slightly longer than those in tetracarbonyltungsten(0) complexes $\mathbf{1 3}$ and $\mathbf{1 4}$ (averaged $2.463 \AA$), and shorter than those in tetracarbonylchromium (0) complexes $\mathbf{1 0}-\mathbf{1 2}$ (averaged $2.356 \AA$) due to the small atomic radius of chromium.

The Mo-C bond distances are 1.990(4)-2.039(5) Å for 3a and 2.001(4)-2.048(5) \AA for $\mathbf{3 b}$. The shorter $\mathrm{Mo}-\mathrm{C}$ bond is trans to the longer $\mathrm{Mo}-\mathrm{P}$ bond, which is in agreement with a trans effect of the donors $(\mathrm{P}<\mathrm{C} \equiv \mathrm{O})$.

It is interesting to note that the Mo-P bond lengths in $\mathbf{1 5}$ and $\mathbf{1 6}$ (Table 3) are larger than those in $\mathbf{3 a}$ and $\mathbf{3 b}$, which can be explained by the increased steric crowding caused by the two ligands in cis positions, while the Mo-P bond lengths in $\mathbf{1 7}$ are shorter than those in both $\mathbf{3 a}$ and $\mathbf{3 b}$, probably due to relative trans influences of the phosphino and carbonyl ligands.

The $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ bite angles of $\mathbf{3 a}$ and $\mathbf{3 b}$ are much smaller than the $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ of the seven-membered ring in $\mathbf{1 8}$ (Table 3). We see that the $\mathrm{P}-\mathrm{M}-\mathrm{P}$ bite angle is dependent only on the ligand and the type of transition metal. The aromatic rings in $\mathbf{3 a}$ and $\mathbf{3 b}$, as expected, have usual bond lengths and angles.

Conclusions. - We have shown the successful synthesis of group-6 transition metal tetracarbonyl complexes 2-4 of ligand 1. All these new complexes were characterized by elemental analysis, IR, and multinuclear NMR spectroscopy. The ligand showed a clear tendency to coordinate in a cis-fashion to these transition metals, as indicated by ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy. For the complex cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathbf{1})\right](3)$, the molecular structure was determined.

We would like to thank the Deanship of Scientific Research at the Taibah University for funding (Res. No. 967/ 433).

REFERENCES

[1] H. T. Al-Masri, J. Sieler, E. Hey-Hawkins, Appl. Organomet. Chem. 2003, 17, 63; H. T. Al-Masri, J. Sieler, E. Hey-Hawkins, Appl. Organomet. Chem. 2003, 17, 641; H. T. Al-Masri, J. Sieler, P. Lönnecke, S. Blaurock, K. Domasevitch, E. Hey-Hawkins, Tetrahedron 2004, 60, 333; H. T. AlMasri, J. Sieler, P. Lönnecke, P. C. Junk, E. Hey-Hawkins, Inorg. Chem. 2004, 43, 7162; H. T. AlMasri, J. Sieler, P. C. Junk, K. Domasevitch, E. Hey-Hawkins, J. Organomet. Chem. 2005, 690, 469 ; H. T. Al-Masri, J. Sieler, S. Blaurock, P. Lönnecke, P. Junk, E. Hey-Hawkins, Z. Anorg. Allg. Chem. 2005, 631, 518; H. T. Al-Masri, J. Baldamus, E. Hey-Hawkins, Polyhedron 2009, 28, 3515.
[2] H. T. Al-Masri, A. H. Emwas, Z. A. Al-Talla, M. H. Alkordi, Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187, 1082.
[3] H. T. Al-Masri, Z. Anorg. Allg. Chem. 2012, 638, 112.
[4] S. J. Berners-Price, P. J. Sadler, Struct. Bond. (Berlin) 1988, 70, $27-102$; R. Meijboom, R. J. Bowen, S. J. Berners-Price, Coord. Chem. Rev. 2009, 253, 325.
[5] F. R. Hartley, 'The Chemistry of Organophosphorus Compounds', John Wiley \& Sons, Manchester, 1990, Vol. 1, pp. 255-294; F. Agbossou, F. Carpentier, J. F. Hapiot, I. Suisse, A. Mortreux, Coord. Chem. Rev. 1998, 178-180, 1615; Z. Fei, P. J. Dyson, Coord. Chem. Rev. 2005, 249, 2056.
[6] J. Reedijk, Chem. Commun. 1996, 801.
[7] J. Y. Zhang, J. J. Vittal, Keat, W. Henderson, J. R. Wheaton, I. H. Hall, T. S. Andy Hor, Y. K. Yan, J. Organomet. Chem. 2002, 650, 123.
[8] M. Aydmar, A. Baysal, B. Gümgüm, J. Organomet. Chem. 2003, 693, 3810, and ref. cit. therein.
[9] E. Killian, K. Blann, A. Bollmann, J. T. Dixon, S. Kuhlmann, M. C. Maumela, H. Maumela, D. H. Morgan, P. Nongodlwana, M. J. Overett, M. Pretorius, K. Höfener, P. Wasserscheid, J. Mol. Catal. A 2007, 270, 214.
[10] I. Bachert, I. Bartusseck, P. Braunstein, E. Guillon, J. Rose, G. Kickelbick, J. Organomet. Chem. 1999, 580, 257.
[11] P. Bhattacharyya, T. Q. Ly, A. M. Z. Slawin, J. D. Woollins, Polyhedron 2001, 20, 1803.
[12] P. Kafarski, P. Mastalerz, 'Aminophosphonates: Natural Occurrence, Biochemistry and Biological Properties', in 'Beiträge zur Wirkstofforschung', Heft 21, Eds. P. Oehme, H. Löwe, and E. Gores, Akademie-Industrie-Komplex Arzneimittelforschung, Akademie der Wissenschaften der DDR, Institut für Wirkstofforschung, Berlin, DDR, 1984.
[13] S. Priya, M. S. Balakrishna, J. T. Mague, Inorg. Chem. Commun. 2001, 4, 437.
[14] D. D. Perrin, W. L. F. Armarego, 'Purification of Laboratory Chemicals', 3rd edn., Pergamon, New York, 1988.
[15] SMART 5.625, Bruker AXS Inc., Madison, 2001.
[16] SAINT 6.28A, Bruker AXS Inc., Madison, 2001.
[17] G. M. Sheldrick, SADABS, a Program for Empirical Absorption Correction, University of Göttingen, Germany, 1996.
[18] G. M. Sheldrick, SHELXTL 6.10, Bruker AXS Inc., Madison, 2000; L. Farrugia, J. Appl. Crystallogr. 1999, 32, 837; G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112; G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467.
[19] A. Karacar, M. Freytag, H. Thönnessen, J. Ömelanczuk, P. G. Jones, R. Bartsch, R. Schmeltzer, Heteroat. Chem. 2001, 12, 102.
[20] L. Hirsivaara, M. Haukka, S. Jääskeläinen, R. H. Laitinen, E. Niskanen, T. A. Pakkanen, J. Pursiainen, J. Organomet. Chem. 1999, 579, 45.
[21] L. Hirsivaara, L. Guerricabeitia, M. Haukka, P. Suomalainen, R. H. Laitinen, T. A. Pakkanen, J. Pursiainen, Inorg. Chim. Acta 2000, 307, 47.
[22] M. S. Balakrishna, T. K. Prakasha, S. S. Krishnamurthy, U. Siriwardane, N. S. Hosmane, J. Organomet. Chem. 1990, 390, 203.
[23] D. S. Payne, A. P. Walker, J. Chem. Soc. 1966, 498.
[24] M. S. Balakrishna, P. P. George, J. T. Mague, J. Organomet. Chem. 2004, 689, 3388.
[25] K. G. Gaw, M. B. Smith, J. W. Steed, J. Organomet. Chem. 2002, 664, 294.
[26] M. S. Balakrishna, S. Naik, S. M. Mobin, Inorg. Chim. Acta 2010, 363, 3010.
[27] K. G. Gaw, M. B. Smith, A. M. Z. Slawin, New J. Chem. 2000, 24, 429.
[28] M. Knorr, C. Strohmann, Organometallics 1999, 18, 248
[29] T. Agapie, M. W. Day, L. M. Henling, J. A. Labinger, J. E. Bercaw, Organometallics 2006, 25, 2733.
[30] L. E. Bowen, M. F. Haddow, A. G. Orpen, D. F. Wass, J. Chem. Soc., Dalton Trans. 2007, 1160.
[31] V. Kirin, P. W. Roesky, Eur. J. Inorg. Chem. 2004, 1045.
[32] G. M. Gray, Y. Zhang, J. Crystallogr. Spectrosc. Res. 1993, 23, 711.
[33] O. Kühl, S. Blaurock, J. Sieler, E. Hey-Hawkins, Polyhedron 2001, 20, 111.
[34] S. Priya, M. S. Balakrishna, J. T. Mague, J. Organomet. Chem. 2003, 679, 116.
[35] T. Q. Ly, A. M. Z. Slawin, J. D. Woollins, J. Chem. Soc., Dalton Trans. 1997, 1611.
[36] N. Biricik, C. Kayan, B. Gümgüm, Z. Fei, R. Scopelliti, P. J. Dyson, N. Gurbuz, I. Özdemir, Inorg. Chim. Acta 2010, 363, 1039.

